Properties

Label 172800.bm.60.V
Order $ 2^{6} \cdot 3^{2} \cdot 5 $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4^2:D_{10}$
Order: \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,2)(3,4), (2,3,4)(5,7)(6,8)(10,12,14)(11,13,15), (2,4,3)(10,11)(12,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $A_4\times F_5\times S_6$
Order: \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5.A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $F_5\times S_4^2$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
$W$$A_4\times F_5\times S_4$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$A_4^2:C_2^2\times F_5$
Normal closure:$D_5\times A_4\times S_6$
Core:$D_5\times A_4$
Minimal over-subgroups:$D_5\times A_4\times S_5$$A_4\times F_5\times S_4$$A_4\times F_5\times S_4$$A_4\times D_{10}\times S_4$
Maximal under-subgroups:$D_5\times A_4^2$$A_4^2:C_{10}$$A_4^2:D_5$$D_4\times D_5\times A_4$$C_2\times D_{10}\times S_4$$S_3\times D_5\times A_4$$C_3\times D_5\times S_4$$A_4^2:C_2^2$

Other information

Number of subgroups in this autjugacy class$30$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$A_4\times F_5\times S_6$