Properties

Label 172800.bm.24.K
Order $ 2^{5} \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5\times A_4\times A_5$
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,4,2)(5,8)(7,9)(10,12,15)(11,14,13), (1,2)(3,4), (5,8,9,6,7), (1,3)(2,4), (1,3,4)(5,8)(7,9)(10,14)(12,15), (1,2,4), (5,7)(6,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $A_4\times F_5\times S_6$
Order: \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5.A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $F_5\times S_4\times S_5$, of order \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \)
$W$$A_4\times F_5\times S_5$, of order \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$A_4\times F_5\times S_5$
Normal closure:$D_5\times A_4\times A_6$
Core:$D_5\times A_4$
Minimal over-subgroups:$D_5\times A_4\times A_6$$D_5\times A_4\times S_5$$A_4\times F_5\times A_5$$A_4\times A_5:F_5$
Maximal under-subgroups:$C_5\times A_4\times A_5$$C_2\times D_{10}\times A_5$$D_5\times \GL(2,4)$$C_2^3:\GL(2,4)$$D_5\times A_4^2$$A_4\times D_5^2$$S_3\times D_5\times A_4$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$A_4\times F_5\times S_6$