Properties

Label 172800.bm.1440.E
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{5} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times F_5$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,3,2)(5,8,9,6,7)(11,15), (1,3,2), (5,8,9,6,7), (5,6,7,8), (5,7)(6,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $A_4\times F_5\times S_6$
Order: \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5.A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6\times F_5\times S_4$
Normal closure:$A_4\times F_5\times S_6$
Core:$F_5$
Minimal over-subgroups:$C_2\times A_4\times F_5$
Maximal under-subgroups:$C_3\times F_5$$C_3\times F_5$$C_2\times F_5$$C_2\times C_{12}$

Other information

Number of subgroups in this autjugacy class$120$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$A_4\times F_5\times S_6$