Properties

Label 172800.bm.1440.A
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{5} \cdot 3^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5\times A_4$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,2)(3,4), (5,8,9,6,7), (1,3)(2,4), (1,2,4), (5,7)(6,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $A_4\times F_5\times S_6$
Order: \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2\times S_6$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Automorphism Group: $S_6:C_2^2$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is nonabelian, nonsolvable, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5.A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$A_4\times F_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$S_6$
Normalizer:$A_4\times F_5\times S_6$
Minimal over-subgroups:$C_{10}^2:C_6$$A_4\times F_5$$A_4\times F_5$$A_4\times F_5$
Maximal under-subgroups:$C_5\times A_4$$C_2\times D_{10}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4\times F_5\times S_6$