Properties

Label 1728.825.54.b1
Order $ 2^{5} $
Index $ 2 \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4^2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{2}, b, c^{81}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_4^2:C_{108}$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_{54}$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Automorphism Group: $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
Outer Automorphisms: $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.(C_{18}\times A_4).C_2$
$\operatorname{Aut}(H)$ $C_2^6:S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^6:A_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_4\times C_{108}$
Normalizer:$C_4^2:C_{108}$
Minimal over-subgroups:$C_2\times C_4\times C_{12}$$C_4^2:C_4$
Maximal under-subgroups:$C_2^2\times C_4$$C_4^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^2\times C_{54}$