Properties

Label 1728.825.48.d1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{36}$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $a^{3}c^{27}, c^{12}, a^{2}b^{2}c^{54}, c^{36}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_4^2:C_{108}$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.(C_{18}\times A_4).C_2$
$\operatorname{Aut}(H)$ $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_{108}$
Normalizer:$C_2^2\times C_{108}$
Normal closure:$C_2^2\times C_{36}$
Core:$C_{18}$
Minimal over-subgroups:$C_{108}$$C_2\times C_{36}$
Maximal under-subgroups:$C_{18}$$C_{12}$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_4^2:C_6$