Properties

Label 1728.825.32.a1
Order $ 2 \cdot 3^{3} $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{54}$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Generators: $b^{2}c^{54}, c^{76}, c^{12}, c^{36}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_4^2:C_{108}$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_4^2:C_2$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \)
Outer Automorphisms: $D_4^2$, of order \(64\)\(\medspace = 2^{6} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.(C_{18}\times A_4).C_2$
$\operatorname{Aut}(H)$ $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
$\operatorname{res}(S)$$C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2048\)\(\medspace = 2^{11} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_4^2:C_{108}$
Normalizer:$C_4^2:C_{108}$
Minimal over-subgroups:$C_2\times C_{54}$$C_2\times C_{54}$$C_{108}$
Maximal under-subgroups:$C_{27}$$C_{18}$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$C_4^2:C_2$