Properties

Label 1728.7359.6.k1.b1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{18}.C_4^2$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $ac^{3}, c^{6}, b^{18}c^{6}, b^{9}c^{3}, b^{12}, b^{4}, a^{2}b^{18}c^{6}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^2.(D_6\times C_{36})$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6.(C_2^5\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $C_2\wr S_3\times C_6$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_{18}$
Normalizer:$C_4^2:C_{36}$
Normal closure:$(C_2\times C_{12}):C_{36}$
Core:$C_2^2\times C_{36}$
Minimal over-subgroups:$(C_2\times C_{12}):C_{36}$$C_4^2:C_{36}$
Maximal under-subgroups:$C_2^2\times C_{36}$$C_2^2\times C_{36}$$C_2^2\times C_{36}$$C_6.C_4^2$
Autjugate subgroups:1728.7359.6.k1.a1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed