Properties

Label 1728.7359.48.k1.a1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{18}$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a^{2}c^{6}, b^{18}, b^{4}c^{4}, b^{12}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2^2.(D_6\times C_{36})$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6.(C_2^5\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$\card{W}$$1$

Related subgroups

Centralizer:$C_6.C_{12}^2$
Normalizer:$C_6.C_{12}^2$
Normal closure:$C_6\times C_{18}$
Core:$C_2\times C_6$
Minimal over-subgroups:$C_6\times C_{18}$$C_2\times C_{36}$$C_2\times C_{36}$$C_2^2\times C_{18}$
Maximal under-subgroups:$C_{18}$$C_{18}$$C_{18}$$C_2\times C_6$
Autjugate subgroups:1728.7359.48.k1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed