Properties

Label 1728.6120.64.a1.a1
Order $ 3^{3} $
Index $ 2^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\He_3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(3\)
Generators: $b^{2}c^{3}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $3$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_6^2.(C_4\times D_6)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_4:C_4^2$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^5.C_2^6$, of order \(2048\)\(\medspace = 2^{11} \)
Outer Automorphisms: $C_2^6:D_4$, of order \(512\)\(\medspace = 2^{9} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\card{W}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2\times C_{12}$
Normalizer:$C_6^2.(C_4\times D_6)$
Complements:$C_4:C_4^2$
Minimal over-subgroups:$C_2\times \He_3$$C_2\times \He_3$$C_2\times \He_3$$C_2\times \He_3$$C_2\times \He_3$$C_2\times \He_3$$C_2\times \He_3$
Maximal under-subgroups:$C_3^2$$C_3^2$$C_3^2$

Other information

Möbius function not computed
Projective image not computed