Properties

Label 1728.6120.3.a1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.(S_3\times C_4^2)$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{3}, d^{6}, b^{3}, a^{2}, d^{4}, c^{2}, d^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6^2.(C_4\times D_6)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ Group of order \(18432\)\(\medspace = 2^{11} \cdot 3^{2} \)
$\card{W}$\(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_6.(S_3\times C_4^2)$
Normal closure:$C_6^2.(C_4\times D_6)$
Core:$C_6^2.D_4$
Minimal over-subgroups:$C_6^2.(C_4\times D_6)$
Maximal under-subgroups:$C_6^2.D_4$$C_6^2.C_2^3$$C_6^2.D_4$$C_2^3.S_3^2$$C_2^3.S_3^2$$C_6^2.D_4$$C_6^2.D_4$$C_4\times C_6.D_4$$C_6.(C_4\times D_4)$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed