Properties

Label 1728.34767.18.t1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:(C_4\times Q_8)$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ab^{3}, c^{4}, d^{6}, c^{3}, d^{3}, c^{6}d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_4).S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_3^3.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_2^6:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2.(Q_8\times D_6)$
Normal closure:$(C_6\times C_{12}).D_6$
Core:$C_2\times C_{12}$
Minimal over-subgroups:$C_6^2.C_2^3$$C_6^2.C_2^3$$C_2.(Q_8\times D_6)$
Maximal under-subgroups:$C_4:C_{12}$$C_{12}:C_4$$C_6:Q_8$$C_{12}:C_4$$C_6.D_4$$C_{12}:C_4$$C_6.D_4$$C_4\times Q_8$
Autjugate subgroups:1728.34767.18.t1.b1

Other information

Number of subgroups in this conjugacy class$9$
Möbius function not computed
Projective image not computed