Properties

Label 1728.34722.8.p1.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_{12}$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac^{3}d^{3}, d^{4}, c^{4}, b^{3}, c^{6}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_4).S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $\GL(2,3).C_2^6$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\card{W}$\(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_3^3:(C_4\times D_4)$
Normal closure:$C_6^2.D_6$
Core:$C_3^2:D_6$
Minimal over-subgroups:$C_6^2.D_6$
Maximal under-subgroups:$C_3^2:D_6$$C_3^2\times D_6$$C_3^2:C_{12}$$C_6^2:C_2$$C_3:D_{12}$$C_3:D_{12}$$C_3:D_{12}$$C_3:D_{12}$
Autjugate subgroups:1728.34722.8.p1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed