Subgroup ($H$) information
| Description: | $A_4:Q_{16}$ |
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Index: | \(9\)\(\medspace = 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rr}
23 & 48 \\
33 & 5
\end{array}\right), \left(\begin{array}{rr}
43 & 0 \\
42 & 43
\end{array}\right), \left(\begin{array}{rr}
22 & 21 \\
21 & 1
\end{array}\right), \left(\begin{array}{rr}
35 & 24 \\
9 & 73
\end{array}\right), \left(\begin{array}{rr}
43 & 42 \\
0 & 43
\end{array}\right), \left(\begin{array}{rr}
1 & 12 \\
36 & 13
\end{array}\right), \left(\begin{array}{rr}
13 & 0 \\
0 & 13
\end{array}\right)$
|
| Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_3\times C_6.\GL(2,\mathbb{Z}/4)$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| $\operatorname{Aut}(H)$ | $\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| $\operatorname{res}(S)$ | $\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $1$ |
| Projective image | $C_3^2:\GL(2,\mathbb{Z}/4)$ |