Properties

Label 1728.31928.9.c1.a1
Order $ 2^{6} \cdot 3 $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4:Q_{16}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 23 & 48 \\ 33 & 5 \end{array}\right), \left(\begin{array}{rr} 43 & 0 \\ 42 & 43 \end{array}\right), \left(\begin{array}{rr} 22 & 21 \\ 21 & 1 \end{array}\right), \left(\begin{array}{rr} 35 & 24 \\ 9 & 73 \end{array}\right), \left(\begin{array}{rr} 43 & 42 \\ 0 & 43 \end{array}\right), \left(\begin{array}{rr} 1 & 12 \\ 36 & 13 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3\times C_6.\GL(2,\mathbb{Z}/4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6.\GL(2,\mathbb{Z}/4)$
Normal closure:$C_6.\GL(2,\mathbb{Z}/4)$
Core:$A_4:Q_8$
Minimal over-subgroups:$C_6.\GL(2,\mathbb{Z}/4)$$C_6.\GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$A_4:Q_8$$Q_8\times A_4$$A_4:C_8$$C_2^2:Q_{16}$$C_3:Q_{16}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_3^2:\GL(2,\mathbb{Z}/4)$