Properties

Label 1728.3085.2.g1.a1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2\times C_{12}).D_{18}$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(2\)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $ac^{9}, b^{12}, b^{8}, b^{3}c^{9}, c^{18}, c^{12}, c^{28}, b^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{12}^2.D_6$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_9.(C_2\times C_6^2).C_2^5$
$\operatorname{Aut}(H)$ $(C_6\times C_{18}).C_6.C_2^5$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$S_3\times D_{18}$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_{12}^2.D_6$
Minimal over-subgroups:$C_{12}^2.D_6$
Maximal under-subgroups:$C_{12}:C_{36}$$C_{18}:C_{24}$$C_{12}.D_{18}$$C_{12}.(C_4\times S_3)$$C_{18}.C_4^2$

Other information

Möbius function$-1$
Projective image$S_3\times D_{18}$