Subgroup ($H$) information
| Description: | $C_{18}:C_8$ |
| Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Generators: |
$b^{3}, c^{12}, c^{28}, b^{12}c^{18}, b^{6}, b^{12}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $C_{12}^2.D_6$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $D_6$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_9.(C_2\times C_6^2).C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_2\times D_{36}:C_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_6^2.D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $W$ | $D_{18}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
| Centralizer: | $C_{12}:C_4$ | |||
| Normalizer: | $C_{12}^2.D_6$ | |||
| Minimal over-subgroups: | $C_{18}:C_{24}$ | $C_{36}:C_8$ | $C_{36}:C_8$ | $C_{36}:C_8$ |
| Maximal under-subgroups: | $C_2\times C_{36}$ | $C_9:C_8$ | $C_6:C_8$ |
Other information
| Möbius function | $-6$ |
| Projective image | $S_3\times D_{18}$ |