Properties

Label 1728.10970.576.b1
Order $ 3 $
Index $ 2^{6} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(3\)
Generators: $c^{12}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{12}^2.C_{12}$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{12}^2:C_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^8.A_4.C_2\times \GL(2,3)$
Outer Automorphisms: $C_2.C_2^6.C_3.C_2^4.C_6$
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(331776\)\(\medspace = 2^{12} \cdot 3^{4} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{12}^2.C_{12}$
Normalizer:$C_{12}^2.C_{12}$
Minimal over-subgroups:$C_3^2$$C_9$$C_6$$C_6$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{12}^2:C_4$