Subgroup ($H$) information
| Description: | $C_{102}:C_4$ |
| Order: | \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(204\)\(\medspace = 2^{2} \cdot 3 \cdot 17 \) |
| Generators: |
$d^{102}, d^{12}, d^{136}, c, a$
|
| Derived length: | $2$ |
The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $C_{204}.C_2^3$ |
| Order: | \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \) |
| Exponent: | \(204\)\(\medspace = 2^{2} \cdot 3 \cdot 17 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^4.C_2^4.C_{51}.C_8.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2\times D_4\times F_{17}$, of order \(4352\)\(\medspace = 2^{8} \cdot 17 \) |
| $\operatorname{res}(S)$ | $C_{17} \rtimes (C_2\times D_4\times C_{16})$, of order \(4352\)\(\medspace = 2^{8} \cdot 17 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(32\)\(\medspace = 2^{5} \) |
| $W$ | $D_{34}$, of order \(68\)\(\medspace = 2^{2} \cdot 17 \) |
Related subgroups
| Centralizer: | $C_2^2\times C_6$ | |||
| Normalizer: | $C_{204}.C_2^3$ | |||
| Minimal over-subgroups: | $C_{102}:Q_8$ | $C_{102}.C_2^3$ | ||
| Maximal under-subgroups: | $C_2\times C_{102}$ | $C_{17}:C_{12}$ | $C_{34}:C_4$ | $C_2\times C_{12}$ |
Other information
| Number of subgroups in this autjugacy class | $12$ |
| Number of conjugacy classes in this autjugacy class | $12$ |
| Möbius function | $2$ |
| Projective image | $C_2\times D_{34}$ |