Properties

Label 161280.ba.120.D
Order $ 2^{6} \cdot 3 \cdot 7 $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_4\times F_7$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $\langle(5,7), (5,8)(6,7), (1,4)(2,3), (1,3)(2,4), (1,3)(2,4)(5,6)(7,8)(9,12,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_2^2\times S_7\times D_4$
Order: \(161280\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.C_2^6.D_6.A_7.C_2$
$\operatorname{Aut}(H)$ $C_2^5.C_2^6.(C_2\times S_3\times F_7)$
$W$$C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^2\times D_4\times F_7$
Normal closure:$C_2^2\times S_7\times D_4$
Core:$C_2^2\times D_4$

Other information

Number of subgroups in this autjugacy class$120$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^2\times S_7$