Properties

Label 16128.by.3.a1
Order $ 2^{8} \cdot 3 \cdot 7 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:\GL(3,2)$
Order: \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
Index: \(3\)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $\langle(4,7)(5,6), (8,9)(10,13)(11,14)(12,15), (8,14)(9,10)(11,12)(13,15), (4,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $C_6\times C_2^4:\GL(3,2)$
Order: \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^4.\PSL(2,7)\times S_3$
$\operatorname{Aut}(H)$ $C_2^4.\PSL(2,7)\times S_3$
$W$$C_2^3:\GL(3,2)$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_6\times C_2^4:\GL(3,2)$
Complements:$C_3$ $C_3$
Minimal over-subgroups:$C_6\times C_2^4:\GL(3,2)$
Maximal under-subgroups:$C_2^4:\GL(3,2)$$C_2^5:S_4$$C_2^5:S_4$$C_2\times F_8:C_6$$C_2^2\times \GL(3,2)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_3\times C_2^3:\GL(3,2)$