Properties

Label 16128.bb.672.b1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2^{5} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 6 & 2 & 4 & 0 \\ 5 & 1 & 0 & 3 \\ 1 & 0 & 1 & 2 \\ 0 & 6 & 5 & 6 \end{array}\right), \left(\begin{array}{rrrr} 5 & 0 & 0 & 0 \\ 6 & 2 & 0 & 0 \\ 3 & 0 & 2 & 0 \\ 0 & 4 & 6 & 5 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_3\times \SL(2,7).D_8$
Order: \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \)
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_4).C_2^4.\SO(3,7)$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_3\times Q_{16}$
Normalizer:$C_{12}.C_2^4$
Normal closure:$C_3\times D_8.\PSL(2,7)$
Core:$C_6$
Minimal over-subgroups:$C_6\wr C_2$$D_4:C_6$$D_4:C_6$$D_4:C_6$
Maximal under-subgroups:$C_2\times C_6$$C_2\times C_6$$C_{12}$$D_4$

Other information

Number of subgroups in this conjugacy class$84$
Möbius function not computed
Projective image$D_8\times \GL(3,2)$