Properties

Label 1600.9861.80.u1.b2
Order $ 2^{2} \cdot 5 $
Index $ 2^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $b^{2}d^{5}e^{8}, d^{2}, b^{2}e^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_{10}^2.C_2^2$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12800\)\(\medspace = 2^{9} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(S)$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2\times D_{10}$
Normal closure:$D_{10}^2$
Core:$C_1$
Minimal over-subgroups:$D_5^2$$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times D_{10}$
Maximal under-subgroups:$C_{10}$$D_5$$D_5$$C_2^2$
Autjugate subgroups:1600.9861.80.u1.a11600.9861.80.u1.a21600.9861.80.u1.b1

Other information

Number of subgroups in this conjugacy class$20$
Möbius function not computed
Projective image$D_{10}^2.C_2^2$