Subgroup ($H$) information
| Description: | $D_{10}:D_{10}$ |
| Order: | \(400\)\(\medspace = 2^{4} \cdot 5^{2} \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Generators: |
$abd^{3}e^{4}, e^{2}, b^{2}, c, e^{5}, d^{2}e^{4}$
|
| Derived length: | $2$ |
The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $D_{10}^2.C_2^2$ |
| Order: | \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(12800\)\(\medspace = 2^{9} \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $C_2\times F_5^2:D_4$, of order \(6400\)\(\medspace = 2^{8} \cdot 5^{2} \) |
| $\operatorname{res}(S)$ | $D_{10}^2.C_2^2$, of order \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $D_5^2.C_2^3$, of order \(800\)\(\medspace = 2^{5} \cdot 5^{2} \) |
Related subgroups
Other information
| Möbius function | not computed |
| Projective image | $D_5^2.C_2^3$ |