Properties

Label 1600.9861.4.b1.a1
Order $ 2^{4} \cdot 5^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}:D_{10}$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $abd^{3}e^{4}, e^{2}, b^{2}, c, e^{5}, d^{2}e^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $D_{10}^2.C_2^2$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12800\)\(\medspace = 2^{9} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2\times F_5^2:D_4$, of order \(6400\)\(\medspace = 2^{8} \cdot 5^{2} \)
$\operatorname{res}(S)$$D_{10}^2.C_2^2$, of order \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_5^2.C_2^3$, of order \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{10}^2.C_2^2$
Minimal over-subgroups:$D_{10}\wr C_2$$C_{10}^2:(C_2\times C_4)$$C_{10}^2:D_4$
Maximal under-subgroups:$C_{10}:D_{10}$$D_5\times D_{10}$$C_{10}.D_{10}$$C_{10}\wr C_2$$C_5:D_{20}$$D_4\times D_5$
Autjugate subgroups:1600.9861.4.b1.b1

Other information

Möbius function not computed
Projective image$D_5^2.C_2^3$