Properties

Label 1600.9861.2.g1.b1
Order $ 2^{5} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5^2.D_4$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ae^{5}, d^{2}e^{8}, d^{5}e^{5}, b^{2}, be^{5}, e^{2}, c$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_{10}^2.C_2^2$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12800\)\(\medspace = 2^{9} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $D_{10}^2.C_2^3$, of order \(3200\)\(\medspace = 2^{7} \cdot 5^{2} \)
$\operatorname{res}(S)$$D_{10}^2.C_2^3$, of order \(3200\)\(\medspace = 2^{7} \cdot 5^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_5^2.C_2^3$, of order \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{10}^2.C_2^2$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$D_{10}^2.C_2^2$
Maximal under-subgroups:$D_5^2:C_2^2$$D_5^2:C_4$$D_{10}:F_5$$D_5^2:C_4$$D_{10}:F_5$$C_{10}.(C_2\times F_5)$$(C_5\times C_{10}).Q_8$$C_2^2.D_4$
Autjugate subgroups:1600.9861.2.g1.a1

Other information

Möbius function not computed
Projective image$D_5^2.C_2^3$