Properties

Label 1600.9861.10.b1.a1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times F_5$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ad^{5}, d^{2}e^{6}, e^{5}, b^{2}d^{8}e^{2}, be^{2}, c$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{10}^2.C_2^2$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12800\)\(\medspace = 2^{9} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\operatorname{res}(S)$$C_2^3\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_4\times F_5$
Normal closure:$C_{10}^2:(C_2\times C_4)$
Core:$C_2^2$
Minimal over-subgroups:$C_{10}^2:(C_2\times C_4)$
Maximal under-subgroups:$D_4\times D_5$$C_2^2\times F_5$$D_{10}:C_4$$D_{10}:C_4$$C_2^2\times F_5$$C_4\times F_5$$C_{20}:C_4$$C_4\times D_4$
Autjugate subgroups:1600.9861.10.b1.b1

Other information

Number of subgroups in this conjugacy class$10$
Möbius function not computed
Projective image$D_5^2.C_2^3$