Properties

Label 1600.9136.10.w1.b1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}.D_4$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ad^{5}, d^{10}, c^{5}d^{5}, c^{4}, bd^{5}, c^{10}d^{10}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{10}^2.C_2^4$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_4\times C_2^6.C_2\times F_5$
$\operatorname{Aut}(H)$ $C_2^3.C_2^6$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{res}(S)$$C_2^6\times C_4$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_{10}$
Normalizer:$C_2^2:Q_8\times C_{10}$
Normal closure:$C_{10}^2.C_2^3$
Core:$C_4:C_{20}$
Minimal over-subgroups:$C_{10}^2.C_2^3$$C_2^2:Q_8\times C_{10}$
Maximal under-subgroups:$C_4:C_{20}$$C_2^2\times C_{20}$$C_2^2:C_{20}$$C_2^2:C_{20}$$C_4:C_{20}$$Q_8\times C_{10}$$C_4:C_{20}$$C_2^2:Q_8$
Autjugate subgroups:1600.9136.10.w1.a1

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$C_2^2\times D_{10}$