Properties

Label 1600.908.8.h1
Order $ 2^{3} \cdot 5^{2} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{50}$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Generators: $a, d^{100}, d^{88}, b, d^{40}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_2^4.C_{100}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^4.C_2^5.C_2^3)$
$\operatorname{Aut}(H)$ $C_{20}\times \GL(3,2)$, of order \(3360\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
$\operatorname{res}(S)$$D_4\times C_{20}$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^3\times C_{100}$
Normalizer:$C_2^3\times C_{100}$
Normal closure:$C_2^3\times C_{50}$
Core:$C_2\times C_{50}$
Minimal over-subgroups:$C_2^3\times C_{50}$$C_2^2\times C_{100}$
Maximal under-subgroups:$C_2\times C_{50}$$C_2\times C_{50}$$C_2\times C_{50}$$C_2^2\times C_{10}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_2^3:C_4$