Properties

Label 1600.908.8.f1
Order $ 2^{3} \cdot 5^{2} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{100}$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Generators: $b, d^{88}, d^{100}, d^{50}, d^{40}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2^4.C_{100}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^4.C_2^5.C_2^3)$
$\operatorname{Aut}(H)$ $D_4\times C_{20}$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\operatorname{res}(S)$$C_2^2\times C_{20}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^3\times C_{100}$
Normalizer:$C_2^4.C_{100}$
Minimal over-subgroups:$C_2^2\times C_{100}$$C_2^2\times C_{100}$$\OD_{16}\times C_{25}$
Maximal under-subgroups:$C_2\times C_{50}$$C_{100}$$C_{100}$$C_2\times C_{20}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_2\times D_4$