Properties

Label 1600.908.64.a1
Order $ 5^{2} $
Index $ 2^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{25}$
Order: \(25\)\(\medspace = 5^{2} \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(25\)\(\medspace = 5^{2} \)
Generators: $d^{88}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $5$-Sylow subgroup (hence a Hall subgroup), and a $p$-group.

Ambient group ($G$) information

Description: $C_2^4.C_{100}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2:\OD_{16}$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^7:D_4$, of order \(1024\)\(\medspace = 2^{10} \)
Outer Automorphisms: $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^4.C_2^5.C_2^3)$
$\operatorname{Aut}(H)$ $C_{20}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{20}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1024\)\(\medspace = 2^{10} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^4.C_{100}$
Normalizer:$C_2^4.C_{100}$
Complements:$C_2^2:\OD_{16}$
Minimal over-subgroups:$C_{50}$$C_{50}$$C_{50}$$C_{50}$
Maximal under-subgroups:$C_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^2:\OD_{16}$