Properties

Label 1600.908.50.b1
Order $ 2^{5} $
Index $ 2 \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times \OD_{16}$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $ad^{25}, b, d^{50}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^4.C_{100}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_{50}$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Automorphism Group: $C_{20}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Outer Automorphisms: $C_{20}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^4.C_2^5.C_2^3)$
$\operatorname{Aut}(H)$ $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(S)$$C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{100}$
Normalizer:$C_2^4.C_{100}$
Complements:$C_{50}$
Minimal over-subgroups:$C_{10}\times \OD_{16}$$C_2^2:\OD_{16}$
Maximal under-subgroups:$C_2^2\times C_4$$C_2\times C_8$$\OD_{16}$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_2^2\times C_{50}$