Properties

Label 1600.908.2.c1
Order $ 2^{5} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:C_{200}$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Generators: $a, d^{40}, d^{88}, c, bd^{25}, d^{100}, d^{150}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^4.C_{100}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^4.C_2^5.C_2^3)$
$\operatorname{Aut}(H)$ $C_5:(C_2^3.C_2^5)$, of order \(1280\)\(\medspace = 2^{8} \cdot 5 \)
$\operatorname{res}(S)$$C_5 \times (C_2^3.C_2^5)$, of order \(1280\)\(\medspace = 2^{8} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{100}$
Normalizer:$C_2^4.C_{100}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_2^4.C_{100}$
Maximal under-subgroups:$C_2^2\times C_{100}$$C_2\times C_{200}$$C_2^2:C_{40}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$-1$
Projective image$C_2^3$