Properties

Label 1600.8987.5.b1
Order $ 2^{6} \cdot 5 $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:Q_8\times C_{10}$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Index: \(5\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a, b^{2}c^{10}, c^{5}, d^{5}, b, c^{10}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{10}^2.C_2^4$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^9.C_2^6)$
$\operatorname{Aut}(H)$ $C_2^8.C_2^6$
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_{10}$
Normalizer:$C_2^2:Q_8\times C_{10}$
Normal closure:$C_{10}^2.C_2^4$
Core:$C_2^3:C_{20}$
Minimal over-subgroups:$C_{10}^2.C_2^4$
Maximal under-subgroups:$C_2^3:C_{20}$$C_2^3\times C_{20}$$C_2^3:C_{20}$$C_{10}.C_2^4$$C_2\times C_4:C_{20}$$C_2\times C_4:C_{20}$$C_2\times C_4:C_{20}$$C_{20}.D_4$$C_2^3:Q_8$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed