Properties

Label 1600.371.4.a1.b1
Order $ 2^{4} \cdot 5^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_{50}$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Generators: $ad^{50}, d^{40}, c, d^{100}, b, d^{48}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $\OD_{16}:D_{50}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{50}\times D_4).C_{20}.C_2^4$
$\operatorname{Aut}(H)$ $D_{25}.C_{10}\times C_2^3.\PSL(2,7)$
$\card{\operatorname{res}(S)}$\(8000\)\(\medspace = 2^{6} \cdot 5^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_4\times D_{25}$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$\OD_{16}:D_{50}$
Minimal over-subgroups:$D_4\times D_{50}$
Maximal under-subgroups:$C_2^2\times C_{50}$$C_2\times D_{50}$$C_2\times D_{50}$$C_2\times D_{50}$$C_2\times D_{50}$$C_2\times D_{50}$$C_2\times D_{50}$$C_2^2\times D_{10}$
Autjugate subgroups:1600.371.4.a1.a1

Other information

Möbius function$0$
Projective image$D_{50}.D_4$