Properties

Label 1600.354.4.a1.a1
Order $ 2^{4} \cdot 5^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_{50}$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Generators: $a, d^{10}, c^{4}, d^{25}, b, d^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{50}.\OD_{16}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{50}).C_{20}.C_2^6$
$\operatorname{Aut}(H)$ $D_{25}.C_{10}\times C_2^3.\PSL(2,7)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(8000\)\(\medspace = 2^{6} \cdot 5^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$D_{50}$, of order \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$D_{50}.\OD_{16}$
Minimal over-subgroups:$C_{100}:C_2^3$
Maximal under-subgroups:$C_2^2\times C_{50}$$C_2\times D_{50}$$C_2\times D_{50}$$C_2\times D_{50}$$C_2\times D_{50}$$C_2\times D_{50}$$C_2\times D_{50}$$C_2\times D_{50}$$C_2\times D_{50}$$C_2\times D_{50}$$C_2\times D_{50}$$C_2^2\times D_{10}$

Other information

Möbius function$0$
Projective image$C_4\times D_{50}$