Properties

Label 1600.299.8.i1.a1
Order $ 2^{3} \cdot 5^{2} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{50}:C_4$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Generators: $ab, b^{2}cd^{50}, d^{24}, c, d^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $(C_2\times C_4).D_{100}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(256000\)\(\medspace = 2^{11} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $D_{100}:C_{20}$, of order \(4000\)\(\medspace = 2^{5} \cdot 5^{3} \)
$\card{W}$\(100\)\(\medspace = 2^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_{50}.C_4^2$
Normal closure:$C_2^2.D_{50}$
Core:$C_2\times C_{50}$
Minimal over-subgroups:$C_2^2.D_{50}$
Maximal under-subgroups:$C_2\times C_{50}$$C_{25}:C_4$$C_{10}:C_4$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image not computed