Properties

Label 1600.299.40.d1.a1
Order $ 2^{3} \cdot 5 $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_{10}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a, d^{50}, d^{20}, cd^{50}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_2\times C_4).D_{100}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(256000\)\(\medspace = 2^{11} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\card{W}$\(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$(C_2\times C_4).D_{20}$
Normal closure:$C_2\times D_{50}$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$C_2\times D_{50}$$C_2^2\times D_{10}$$D_{10}:C_4$$D_{10}:C_4$
Maximal under-subgroups:$C_2\times C_{10}$$D_{10}$$D_{10}$$D_{10}$$C_2^3$
Autjugate subgroups:1600.299.40.d1.b1

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$0$
Projective image not computed