Properties

Label 1600.299.40.c1.b1
Order $ 2^{3} \cdot 5 $
Index $ 2^{3} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{20}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $bd^{50}, d^{20}, b^{2}, cd^{50}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(C_2\times C_4).D_{100}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{20}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $D_4\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(256000\)\(\medspace = 2^{11} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^2\times C_{100}$
Normalizer:$(C_2\times C_4).D_{100}$
Minimal over-subgroups:$C_2\times C_{100}$$C_2^2\times C_{20}$$D_{10}:C_4$$C_{20}:C_4$
Maximal under-subgroups:$C_2\times C_{10}$$C_{20}$$C_2\times C_4$
Autjugate subgroups:1600.299.40.c1.a1

Other information

Möbius function$0$
Projective image not computed