Properties

Label 1600.299.32.e1.a1
Order $ 2 \cdot 5^{2} $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{50}$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Generators: $d^{50}, d^{20}, d^{44}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $(C_2\times C_4).D_{100}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_4\times D_4$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
Outer Automorphisms: $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(256000\)\(\medspace = 2^{11} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_{20}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_{50}.C_4^2$
Normalizer:$(C_2\times C_4).D_{100}$
Minimal over-subgroups:$C_2\times C_{50}$$C_2\times C_{50}$$C_2\times C_{50}$$D_{50}$$D_{50}$$C_{100}$$C_{100}$
Maximal under-subgroups:$C_{25}$$C_{10}$

Other information

Möbius function$0$
Projective image not computed