Properties

Label 1600.299.20.l1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}:C_4$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $abcd^{50}, b^{2}cd^{50}, d^{50}, d^{25}, d^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $(C_2\times C_4).D_{100}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(256000\)\(\medspace = 2^{11} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_2^2\wr C_2\times F_5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\card{W}$\(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2.D_{20}$
Normal closure:$C_2^2.D_{100}$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$C_{100}:C_4$$C_2^2.D_{20}$
Maximal under-subgroups:$C_2\times C_{20}$$C_{10}:C_4$$C_{10}:C_4$$C_4:C_4$
Autjugate subgroups:1600.299.20.l1.b1

Other information

Number of subgroups in this conjugacy class$10$
Möbius function$0$
Projective image not computed