Properties

Label 1600.299.20.d1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_{10}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a, cd^{50}, d^{50}, b^{2}, d^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_2\times C_4).D_{100}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(256000\)\(\medspace = 2^{11} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $F_5\times C_2^3:\GL(3,2)$, of order \(26880\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \cdot 7 \)
$\card{W}$\(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$(C_2\times C_4).D_{20}$
Normal closure:$C_2^2\times D_{50}$
Core:$C_2^2\times C_{10}$
Minimal over-subgroups:$C_2^2\times D_{50}$$C_2^2.D_{20}$$C_2^2.D_{20}$$C_2^2.D_{20}$
Maximal under-subgroups:$C_2^2\times C_{10}$$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times D_{10}$$C_2^4$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$-2$
Projective image not computed