Properties

Label 1600.2055.50.a1
Order $ 2^{5} $
Index $ 2 \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b, d, e^{25}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^5:C_{50}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_{50}$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Automorphism Group: $C_{20}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Outer Automorphisms: $C_{20}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times C_{10}).C_2^6.C_2^2.\PSL(2,7)$
$\operatorname{Aut}(H)$ $C_2^6:(C_2\times S_4)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\operatorname{res}(S)$$C_2^6:(C_2\times S_4)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(160\)\(\medspace = 2^{5} \cdot 5 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^3\times C_{50}$
Normalizer:$C_2^5:C_{50}$
Complements:$C_{50}$ $C_{50}$
Minimal over-subgroups:$C_{20}:C_2^3$$D_4\times C_2^3$
Maximal under-subgroups:$C_2\times D_4$$C_2^4$$C_2^2\times C_4$

Other information

Number of subgroups in this autjugacy class$28$
Number of conjugacy classes in this autjugacy class$28$
Möbius function$0$
Projective image$C_2^2\times C_{50}$