Properties

Label 1600.2035.2.c1
Order $ 2^{5} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_{100}$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Generators: $\left(\begin{array}{rr} 51 & 0 \\ 0 & 51 \end{array}\right), \left(\begin{array}{rr} 49 & 0 \\ 0 & 49 \end{array}\right), \left(\begin{array}{rr} 1 & 50 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 50 \\ 50 & 1 \end{array}\right), \left(\begin{array}{rr} 93 & 50 \\ 50 & 43 \end{array}\right), \left(\begin{array}{rr} 1 & 60 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, abelian (hence metabelian and an A-group), and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_{100}:C_2^4$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{50}.(C_2^4\times C_{20}).C_2^6.\PSL(2,7)$
$\operatorname{Aut}(H)$ $(C_2\times C_{20}).C_2^6.\PSL(2,7)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(430080\)\(\medspace = 2^{12} \cdot 3 \cdot 5 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^3\times C_{100}$
Normalizer:$C_{100}:C_2^4$
Complements:$C_2$
Minimal over-subgroups:$C_{100}:C_2^4$
Maximal under-subgroups:$C_2^2\times C_{100}$$C_2^3\times C_{50}$$C_2^3\times C_{20}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$D_{25}$