Subgroup ($H$) information
| Description: | $C_2\times C_{50}$ |
| Order: | \(100\)\(\medspace = 2^{2} \cdot 5^{2} \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(50\)\(\medspace = 2 \cdot 5^{2} \) |
| Generators: |
$a, d^{64}, d^{20}, b$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $D_{50}.C_2^4$ |
| Order: | \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \) |
| Exponent: | \(100\)\(\medspace = 2^{2} \cdot 5^{2} \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_4:C_4$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \) |
| Outer Automorphisms: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^4.C_2^4.C_{75}.C_{10}.C_2^3$ |
| $\operatorname{Aut}(H)$ | $S_3\times C_{20}$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(S)$ | $S_3\times C_{20}$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(3200\)\(\medspace = 2^{7} \cdot 5^{2} \) |
| $W$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $4$ |
| Number of conjugacy classes in this autjugacy class | $4$ |
| Möbius function | $0$ |
| Projective image | $C_{100}:C_4$ |