Properties

Label 1600.1518.4.f1
Order $ 2^{4} \cdot 5^{2} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{100}$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Generators: $a, d^{20}, cd^{75}, d^{44}, b, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_2^2\times C_4:C_{100}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_2^4.C_{60}.C_2^2$
$\operatorname{Aut}(H)$ $C_2^3.(C_{20}\times S_4)$
$\card{\operatorname{res}(S)}$\(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^3\times C_{100}$
Normalizer:$C_2^3\times C_{100}$
Normal closure:$C_2^3\times C_{100}$
Core:$C_2^2\times C_{50}$
Minimal over-subgroups:$C_2^3\times C_{100}$
Maximal under-subgroups:$C_2^2\times C_{50}$$C_2\times C_{100}$$C_2^2\times C_{20}$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$0$
Projective image$D_4$