Subgroup ($H$) information
| Description: | $C_2^3\times C_{100}$ |
| Order: | \(800\)\(\medspace = 2^{5} \cdot 5^{2} \) |
| Index: | \(2\) |
| Exponent: | \(100\)\(\medspace = 2^{2} \cdot 5^{2} \) |
| Generators: |
$a, c^{2}, cd^{75}, d^{50}, b, d^{20}, d^{44}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, maximal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).
Ambient group ($G$) information
| Description: | $C_2^2\times C_4:C_{100}$ |
| Order: | \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \) |
| Exponent: | \(100\)\(\medspace = 2^{2} \cdot 5^{2} \) |
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^8.C_2^4.C_{60}.C_2^2$ |
| $\operatorname{Aut}(H)$ | $(C_2\times C_{20}).C_2^6.\PSL(2,7)$ |
| $\card{\operatorname{res}(S)}$ | \(30720\)\(\medspace = 2^{11} \cdot 3 \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $2$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $-1$ |
| Projective image | $C_2^2$ |