Properties

Label 1600.10114.200.i1
Order $ 2^{3} $
Index $ 2^{3} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ad^{5}, b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2^2\times C_{20}:F_5$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}^2.C_2^6.C_{12}.C_2.C_2^4$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(12288\)\(\medspace = 2^{12} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^3\times C_4$
Normalizer:$C_2^3.D_4$
Normal closure:$C_{20}:D_5$
Core:$C_4$
Minimal over-subgroups:$C_4\times D_5$$C_4\times D_5$$C_2^2\times C_4$$C_4:C_4$
Maximal under-subgroups:$C_4$$C_2^2$$C_4$

Other information

Number of subgroups in this autjugacy class$100$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$-8$
Projective image$C_2\times C_{10}^2:C_4$