Properties

Label 1600.10114.20.c1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times D_{10}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ad^{5}, c^{5}, d^{10}, b^{2}, c^{2}d^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^2\times C_{20}:F_5$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}^2.C_2^6.C_{12}.C_2.C_2^4$
$\operatorname{Aut}(H)$ $C_2^2\wr C_2\times F_5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\operatorname{res}(S)$$D_4\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$C_{20}:C_2^3$
Normal closure:$C_{20}:D_{10}$
Core:$C_2\times C_4$
Minimal over-subgroups:$C_{20}:D_{10}$$C_{20}:C_2^3$
Maximal under-subgroups:$C_2\times D_{10}$$C_2\times C_{20}$$C_{10}:C_4$$C_4\times D_5$$C_4\times D_5$$C_2^2\times C_4$

Other information

Number of subgroups in this autjugacy class$120$
Number of conjugacy classes in this autjugacy class$12$
Möbius function$0$
Projective image$C_{10}^2:C_4$