Properties

Label 145200.l.10.g1
Order $ 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times C_{11}^2:C_{30}$
Order: \(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $b^{15}, cd^{20}, b^{20}c^{4}d^{36}, a^{2}b^{18}c^{9}d^{16}, d^{11}, d^{4}, d^{22}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{220}:F_{11}:S_3$
Order: \(145200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{30}.C_{10}.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{60}.C_2.C_2^5$
$W$$C_{11}^2:(S_3\times C_{10})$, of order \(7260\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$C_{220}:F_{11}:S_3$
Complements:$C_{10}$
Minimal over-subgroups:$C_{20}\times C_{11}^2:C_{30}$$(C_{11}\times C_{220}):D_6$
Maximal under-subgroups:$C_2\times C_{11}^2:C_{30}$$C_{11}^2:C_{60}$$C_{11}^2:C_{60}$$C_{220}:D_{11}$$C_4\times C_{11}^2:C_6$$C_2\times C_{60}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{11}^2:(C_{10}\times D_6)$