Properties

Label 14400.cf.72.a1
Order $ 2^{3} \cdot 5^{2} $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5\times D_{10}$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(1,12,14,13,11), (2,3)(4,5)(6,7,10,8,9), (2,3)(4,5), (1,14)(11,13), (1,12)(2,3)(4,5)(6,10)(8,9)(11,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^2\times A_5^2$
Order: \(14400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5^2:D_6$, of order \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $F_5^2:D_4$, of order \(3200\)\(\medspace = 2^{7} \cdot 5^{2} \)
$W$$D_5^2$, of order \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_{10}^2$
Normal closure:$C_2^2\times A_5^2$
Core:$C_2$
Minimal over-subgroups:$D_{10}\times A_5$$D_{10}^2$
Maximal under-subgroups:$C_5\times D_{10}$$C_5:D_{10}$$D_5^2$$D_5^2$$D_5^2$$C_2\times D_{10}$

Other information

Number of subgroups in this autjugacy class$108$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$-1$
Projective image$C_2\times A_5^2$