Subgroup ($H$) information
| Description: | $D_{10}.S_3^2$ |
| Order: | \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \) |
| Index: | \(2\) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$ac^{15}, c^{40}, b^{6}c^{24}, c^{30}, b^{3}c, c^{12}, b^{4}$
|
| Derived length: | $2$ |
The subgroup is normal, maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{30}.(C_4\times D_6)$ |
| Order: | \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_6\times S_3\times D_5).C_2^5$ |
| $\operatorname{Aut}(H)$ | $F_5\times D_6^2$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \) |
| $\operatorname{res}(S)$ | $F_5\times D_6^2$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $D_{10}.S_3^2$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \) |
Related subgroups
Other information
| Möbius function | $-1$ |
| Projective image | $D_{10}.S_3^2$ |