Properties

Label 1440.5010.2.d1.b1
Order $ 2^{4} \cdot 3^{2} \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}.S_3^2$
Order: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Index: \(2\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ac^{15}, c^{40}, b^{6}c^{24}, c^{30}, b^{3}c, c^{12}, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{30}.(C_4\times D_6)$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times S_3\times D_5).C_2^5$
$\operatorname{Aut}(H)$ $F_5\times D_6^2$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$\operatorname{res}(S)$$F_5\times D_6^2$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{10}.S_3^2$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{30}.(C_4\times D_6)$
Minimal over-subgroups:$C_{30}.(C_4\times D_6)$
Maximal under-subgroups:$C_{30}.D_6$$C_{30}:C_{12}$$C_2\times C_3^2:F_5$$C_{15}:C_4^2$$C_{60}:C_4$$C_3^2:C_4^2$
Autjugate subgroups:1440.5010.2.d1.a1

Other information

Möbius function$-1$
Projective image$D_{10}.S_3^2$